

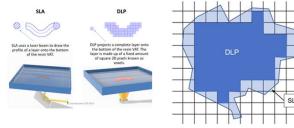
DESIGN AND IMPLEMENTATION OF A HYBRID MICROSCALE OPTICAL 3D PRINTER

Mechanical Engineering

Capstone Senior Design Project • Spring 2023

Micro but Mighty

Testing & Validation



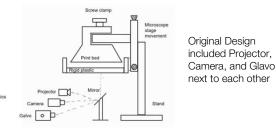
Vision Statement

To provide a cutting-edge, microscale 3D printing technology that seamlessly incorporates all the advantages of a hybrid operation between DLP and SLA printing.

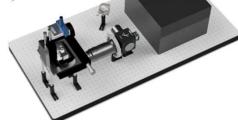
Problem Definition

- Combine SLA and DLP to create a fast, high resolution resin 3D printer
- Moving bed and resin vat
- · Have microscale movement in every axis
- Utilize cameras to create a calibration system

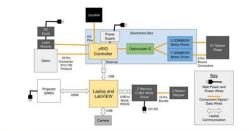
Engineering Requirements

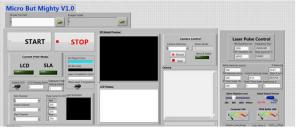

- 1. Be able to print in both SLA and DLP seamlessly
- 2. Movable print bed and vat during printing
- 3. Printing at 100 µm resolution or finer
- 4. Stitching accuracy at 25 µm resolution or finer
- 5. Stitching at least a 2x2 area to demonstrate scaling capabilities
- 6. Create calibration routine for SLA and DLP alignment

Value Proposition


Because this hybrid operation will be able to create both fast and high resolution prints, it can be utilized in a variety of applications such as the following:

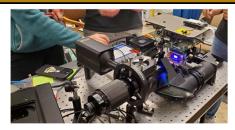
- Micro-scale Research
- Medical medical devices, dental, etc.
- Microelectronics
- Optics Lens Mounts, Tools, Holders
- Automotive Sensors and In-Cabin Elements
- Aerospace & Defense Pressure Sensors, Air flow devices, & Accelerometers


Mechanical Design



Current Design uses a splitter to combine the output of the Camera, Projector, and Galvo

Controls and Electronics


Projection area and calibration grid # Laver projected points for calibration a Camera view and error measurement Current validation plan is to project a grid of dots using the DLP camera. Then the SLA laser aligns its beam onto where the dot is. We then use a camera and a LABVIEW code to create a mesh that offsets any discrepancies between the SLA and the DLP.

Karli Valencia, Corina Capuano and Andrew Bok

Resolution Calculator: Able to calculate print size based on resolution of projector and distance

		S.S								and Award bo must	Recustori val. c
		Pixel size	Max X attacking	MaxY	Max V stitutiong. durrent val	Total X langth press	Total Y langth (mm)	Tatal Y, corrent val (merc)	X clearance (bed - val. per side) (nem)	Y clearance (bed - val, per side) (rest)	Y clearance, current ust (mm)
50	26 111	29.370	1 2	1 1		44.000	117.333	117 333	12:000	0.835	6.400
00	17.779	9.250				50.000	142 223	100.007	0.000		
00	24 886	12.963	3		4	42 000	149 333	09 556	13,000	-15.167	9.722
	35.556	18.5.16	2		1	40.000	143 203	536.667	14.000	11.811	6.547
00	37 333	19.444	1 2			42.000	549.333	112.000	13.000	-15 167	3,500
59	10.000	76-867	1 2			56.000	125.000	96 000	76-000	-4 500	91 500
	34.000	18.228			1	30-375	140.000	105.000	14.313	10 500	7.000
5	36 500	20.578	1 2	1	1 3	44,438	115.500	118.500	71.781	0.250	0.250
	36.000	18,750	1 2		1	43 500	184.000	100.905	13.250	-0.500	5,500
ò	38.400	29.900	1		1	43,200	118-200	115.200	12 400	1 900	1 900
n	M (000)	19 792	3		1	42 790	114 000	F14.000	12 425	2.500	2,500
ä	17.500	19.551	1 2			42188	150-000	112 500	0.906	-15 500	0.350

Further Improvements

- Further improve the accuracy of the validation plan
- More tests for effectiveness of SLA and DLP to decrease print time
- Increase resolution of printer to function better within Microscale
- Make design more compact to decrease foot area needed to run

Acknowledgments and References

- Professor Liang Pan Help on all aspects of the project
- LearnByLayers. (2023). SLA v DLP 3D Printing. [Infographic]. LearnByLayers.com. https://www.learnbylayers.com/product/sla-v-dlpand-resin-materials/
- FormLabs. "SLA vs. DLP: Guide to Resin 3D Printers." FormLab Guides,FormLabs,https://formlabs.com/blog/resin-3d-printercomparison-sla-vs-dlp/. Accessed 18 Jan. 2023.