PARTICLE DEPOSITION FOR ENERGETIC MATERIALS

Andrew Bok¹ and Monique McClain²

¹Graduate Student Researcher, Zucrow Laboratories

²Assistant Professor and PI, Zucrow Laboratories

47th International Pyrotechnics Society Seminar, Albuquerque, NM

Motivation

- Polymer-bonded explosives (PBXs) are manufactured by die-compacting molding powder or prills
- Imprecise die filling before pressing offers limited control over microstructure, including defects such as porosity and cracks, leading to uncertainty in energetic performance and sensitivity
- Accurate, direct filling of a die with raw energetic powder and binders could allow better control of microstructure and reduce uncertainty in PBX sensitivity
 - Particle deposition processes are a prime candidate to enable this idea of improved PBX manufacturing
 - Our goal is to determine how we can control particle deposition and to characterize the particle flow

Prill-based PBX 9501 microstructure [1]

Particle Deposition Overview

- Powder behavior (i.e., flowability) depends primarily on particle size and density [2]
 - Fine particles are cohesive and resist flow
 - Coarse particles typically flow more freely
- Internal stress fields near a hopper's orifice can create stable arches
 - Collapsing this arch via applied vibration induces powder flow
 - Stopping vibration allows the arch to reform and prevent further deposition
- Key advantage: mechanically simple process to actuate and stop flow
 - Has a history in other industries (i.e., pharmaceuticals, etc.)

Fine metal powder arching in a glass nozzle [3]

Fine metal powder flowing due to applied vibration [3]

School of Mechanical Engineering

Testing Equipment

- 5cc Luer-lock syringes used as powder hoppers
- Polypropylene tapered and stainless steel blunt-end 14-27Ga Luer-lock nozzle tips
- 7x25 mm 3V DC vibration motor
 - Driven by DC power supply
 - Custom mount
- Custom test stand
 - Adjustable configuration

Motor, motor mount, syringe with 27Ga tip, 14Ga (olive) and 20Ga (pink) tips

Test stand with syringe and motor in place

Materials

Soda lime (SL) microspheres

Density: 2.5 g/cm³

Sizes: 150-212 μm, 63-90 μm, 53-75 μm, 13-45 μm (as received)

200 µm

150-212 SL

Granulated sugar

Density: 1.6 g/cm³

Size: 150-212 μm (sieved)

53-75 SL

13-45 SL

PA12

PA12 SLS 3DP powder

Density: 1 g/cm³

Size: 42-71 µm (as received)

Sugar

150-212

53-75

13-45

PA12

School of Mechanical Engineering

Soda Lime 7/16/2024 5

Each pile is 1 gram of powder

Experiments and Data Collection

Arching behavior classification

- Explore the effect of the ratio between powder diameter and the orifice diameter (diameter ratio)
- No vibration applied

High-speed video recordings

- Recorded on Phantom VEO-E 340L
- 1600 fps, 1280x720 10-µm square pixels
- 0.1s playback at 24 fps (slowed down 66.7x)
- Voltage varied from 1.3V-3.4V (~140-320Hz)
- Tested effect of tapered and blunt end tips, nozzle size, particle type, and particle size

Video Set	Material and Nozzle Tip
1	150-212 µm soda lime 20Ga tapered tip
2	150-212 µm soda lime 20Ga Blunt-end tip
3	150-212 μm sugar 20Ga tapered tip
4	150-212 µm sugar 20Ga blunt-end tip
5	53-75 μm soda lime 25Ga tapered tip
6	13-45 µm soda lime 20Ga tapered tip
7	13-45 µm soda lime 25Ga tapered tip
8	42-71 µm PA12 22Ga tapered tip

Arching Behavior Classification

Tip	Tip ID	Sugar	Glass	Glass	Glass	Glass	PA12
Gauge	(µm)	(150-212)	(150-212)	(63-90)	(53-75)	(13-45)	(42-71)
14	1530	7.22	7.22	17.00	20.40	34.00	21.55
16	1180	5.57	5.57	13.11	15.73	26.22	16.62
18	830	3.92	3.92	9.22	11.07	18.44	11.69
20	620	2.92	2.92	6.89	8.27	13.78	8.73
22	410	<u>1.93</u>	1.93	4.56	5.47	9.11	5.77
25	300		<u>1.42</u>	3.33	4.00	6.67	4.23
27	230			<u>2.56</u>	3.07	5.11	<u>3.24</u>

Tip	Tip ID	Sugar	Glass	Glass	Glass	Glass	PA12
Gauge	(µm)	(150-212)	(150-212)	(63-90)	(53-75)	(13-45)	(42-71)
14	1600	7.55	7.55	17.78	21.33	35.56	22.54
15	1370	6.46	6.46	15.22	18.27	30.44	19.30
16	1200	5.66	5.66	13.33	16.00	26.67	16.90
18	840	3.96	3.96	9.33	11.20	18.67	11.83
20	600	2.83	2.83	6.67	8.00	13.33	8.45
21	510	2.41	2.41	5.67	6.80	11.33	7.18
22	410	<u>1.93</u>	1.93	4.56	5.47	9.11	5.77
23	340		<u>1.60</u>	3.78	4.53	7.56	4.79
25	260			2.89	3.47	5.78	3.66
27	210				2.80	4.67	2.96

Top table: Tapered tips

Bottom table: Blunt-end tips

 ID/d_{90} used in tables based on [4]

Color Key
Free flow
Arching
Forced arch
Clogging
Unreliable

7/16/2024

Flow Behavior of Different Materials at 1.9V (~200Hz)

150-212 µm Granulated Sugar 1.6 g/cm³ 150-212 μm

53-75 µm Soda Lime Microspheres 2.5 g/cm³ 13-45 μm

42-71 μm SLS PA12 1.0 g/cm³

Flow Behavior of Different Materials at 3.1V (~300Hz)

150-212 µm Granulated Sugar 1.6 g/cm³ 150-212 μm

53-75 µm Soda Lime Microspheres 2.5 g/cm³ 13-45 μm

42-71 μm SLS PA12 1.0 g/cm³

Effect of Blunt-End Tips

1.9V 3.1V Soda Lime Microspheres 150-212 μm

1.9V 3.1V **Granulated Sugar** 150-212 μm

Particle Deposition Video Analysis

- Process video into long-exposure, heatmap image
- Cone angle calculation
 - Binarize image, thresholding can filter out particle traces
 - Extract left and right edges from the first millimeter of the spray pattern
 - Fit lines to the edges
 - Calculate the angle between the lines

Heatmap of 3.1V 150-212 μm soda lime video

Cone angle demonstration

Angle = 98.45°

Electrostatically Affected Deposition

- Improper grounding of wires changed flow
- Particles agglomerate into bonded chains at nozzle tip until a group is heavy enough to break away
- Deposition speed significantly reduced
- Particles can stick to the outer surface of the nozzle
- Future work will look at
 - Dependence on materials
 - Dependence on particle size
 - Quantifying the electrostatic discharge

2.5V, 150-212 µm soda lime, charged flow

Conclusions

- Free-flowing, coarse powders had limited compatible tip sizes for toggleable arching. Typically, a range of approximately $3 < ID/d_{90} < 5$ is useable
- Fine, cohesive powders demonstrate desirable arching behavior for a wide range diameter ratios, which is helpful for more precise flow rates and localized deposition
- Sugar needed larger orifices to controllably arch compared to spheres, while the deposition pattern (cone angle) didn't seem too affected by shape
- The particle flow behavior of fine particles was cyclic and subject to drift, whereas it was more uniform for the coarse particles
- Blunt-end tips demonstrated less dependence on voltage, but more dependence on particle shape
- Electrostatic charge dramatically changes deposition pattern and flow rate

Acknowledgements

- Funding from AFOSR YIP grant FA9550-23-1-0292 and Purdue University's School of Mechanical Engineering
- Professor Paul Mort for training and access to his equipment for characterizing powders
- Professor Steven Son for access to his sieve shaker, digital microscope, and profilometer
- Christina Lumpp, Ismar Chew, and Nigel Horak for preliminary investigations

Thank you!

Questions?

